Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides.
نویسندگان
چکیده
The objective of this study was to develop a simple and rapid method that could detect and discriminate four specific pesticides (isocarbophos, omethoate, phorate, and profenofos) using a single aptamer-based capture procedure followed by Surface Enhanced Raman Spectroscopy (SERS). The aptamer is a single stranded DNA sequence that is specific to capture these four pesticides. The thiolated aptamer was conjugated onto silver (Ag) dendrites, a nanostructure that can enhance the Raman fingerprint of pesticides, through Ag-thiol bonds. It was then backfilled with 6-mercaptohexanol (MH) to prevent nonspecific binding. The modified SERS platform [Ag-(Ap + MH)] was then mixed with each pesticide solution (P) for 20 min. After capturing the pesticides, the Ag-(Ap + MH)-P complex was analyzed under a DXR Raman microscope and TQ Analyst software. The results show that the four pesticides can be captured and detected using principal component analysis based on their distinct fingerprint Raman peaks. The limits of detection (LODs) of isocarbophos, omethoate, phorate, and profenofos were 3.4 μM (1 ppm), 24 μM (5 ppm), 0.4 μM (0.1 ppm), and 14 μM (5 ppm) respectively. This method was also validated successfully in apple juice. These results demonstrated the super capacity of aptamer-based SERS in rapid detection and discrimination of multi-pesticides. This technique can be extended to detect a wide range of pesticides using specific aptamers.
منابع مشابه
Detection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملSelectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in t...
متن کاملCoating Of Silver Nanoparticles by Sputtering Method on Glass Substrates as Surface-Enhanced Raman Spectroscopy (SERS) Biosensor for Detection of Whey Protein
This article has no abstract.
متن کاملAptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays.
Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 8 شماره
صفحات -
تاریخ انتشار 2014